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Abstract

In the present paper, the central series and series of commutants in MR-groups are introduced.
Moreover, various definitions of nilpotency in this category are compared.
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1 Preliminaries

The notion of a exponential R-group, where R is an arbitrary associative ring with unity, was
introduced by R. Lyndon [13]. A. G. Myasnikov and V. N. Remeslennikov [15] gave a more precise
definition of a R-group by introducing a complementary axiom. In particular, their modified notion
of a exponential MR-group is the direct generalization of the notion of a R-module to the case of
noncommutative groups. M. G. Amaglobeli and V. N. Remeslennikov [5] called R-groups with a
complementary axiomMR-groups (R is the ring). A systematic study ofMR-groups was undertaken
in [15, 5, 1, 16, 10, 6, 7, 4, 8, 2, 3]. The results of these studies have turned out useful for the solution
of well-known Tarski’s problems.

Let us recall the basic definitions and facts from the works [13, 15].
Let Lgr = { · , −1, e} be the group language signature, where · is the binary operation of multi-

plication, −1 is the unary operation of inversion, e is the constant symbol for the group unit. We
enrich the group language Lgr up to the language L∗gr = Lgr ∪{fα | α ∈ R}, where fα is the unary
algebraic operation.

Definition 1.1 ([13]). A set G is called a Lyndon R-group if the operations · , −1, e, {fα | α ∈ R}
are defined on it and the following axioms are fulfilled (for brevity, the expression fα(g) will be
written below in the form gα):

(a) group axioms;

(b) for all g, h ∈ G and α, β ∈ R, the following equalities are fulfilled:

(1) g1 = g, g0 = e, eα = e;

(2) gα+β = gαgβ , gαβ = (gα)β ;

(3) (h−1gh)α = h−1gαh.
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Denote by LR the category of Lyndon R-groups. The above axioms are the identities of the
language L∗gr and therefore the class LR is the variety of algebraic systems of the language L∗gr, and
from the general theorems of universal algebra it follows that we can speak of R-homomorphisms,
free R-groups, and so on.

There exist abelian Lyndon R-groups which are not R-modules (see [9] that presents a detailed
study of a free abelian R-group). To the Lyndon axioms the authors of [15] added the additional
axiom (quasi identity)

(4) ∀ g, h ∈ G, α ∈ R [g, h] = e −→ (gh)α = gαhα (MR-axiom),

where [g, h] = g−1h−1gh.

Definition 1.2 ([15]). A group G is called an MR-group if on G the operation gα is defined for
all g ∈ G, α ∈ R and the axioms (1)–(4) are fulfilled.

Denote by MR the class of all R-groups satisfying the axioms (1)–(4). It is obvious that LR ⊃
MR. It is likewise clear that this class is a quasi variety in the language L∗gr and for it there are
the notions of a free MR-group, R-homomorphism, and so on. Moreover, each abelian MR-group
is a R-module and vice versa.

Most of natural examples of exponential R-groups are provided by the class MR. For example,
a free Lyndon exponential R-group is an MR-group, a unipotent group over the field K of zero
characteristic is an MR-group, an arbitrary pro-p-group is an MZp-group over the ring of integer
p-adic numbers Zp, and so on (for other examples see [15]).

Definition 1.3 ([15]). A homomorphism of R-groups ϕ : G→ G∗ is called a R-homomorphism
if ϕ(gα) = ϕ(g)α for any g ∈ G, α ∈ R.

Definition 1.4 ([15]). For g, h ∈ G, α ∈ R, we call the element (g, h)α = h−αg−α(gh)α the
α-commutator of elements g and h.

It is obvious that for α = −1 the α-commutator (g, h)α coincides with an ordinary commutator
[h−1, g−1]. We clearly have (gh)α = gαhα(g, h)α and G ∈ MR ⇐⇒ ([g, h] = e =⇒ (g, h)α = e).
The latter equivalence leads to the definition of an MR-ideal.

Definition 1.5 ([15]). A normal MR-subgroup H E G, G ∈ LR is called an MR-ideal if (g, h)α ∈ H
for any g, h ∈ G, α ∈ R.

Proposition 1.6 ([15]). Let G ∈ LR.

(a) If ϕ : G→ G∗ is a R-homomorphism of groups from MR, then Kerϕ is an MR-ideal in G.

(b) If H is an MR-ideal in G, then G/H ∈MR.

In [15] it is shown that n the study of exponential MR-groups the key role is played by the
operation of tensor completion. This operation naturally generalizes the notion of scalar rings
extension for modules to the noncommutative case. The idea of such generalization for the class of
nilpotent groups is expounded in [14].

Definition 1.7 ([15]). Let G be an MR-group, µ : R → S be a ring homomorphism. Then an
MS-group GS,µ is called the tensor S-completion of an MR-group G if GS,µ satisfies the following
universal properties:
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(a) there exists an R-homomorphism λ : G → Gs,µ such that λ(G) S-generates Gs,µ, i.e.
〈λ(G)〉S = Gs,µ;

(b) for any MS-group H and any R-homomorphism ϕ : G→ H consistent with µ (i.e. ϕ(gα) =
(ϕ(g))µ(α)) there exists an S-homomorphism ψ : Gs,µ → H that makes the diagram

G
λ //

ϕ

��

GS,µ

∃ψ||
H

(ϕ = λψ)

commutative.

Note that if G is an abelian MR-group, them GS,µ ∼= G⊗
R
S is the tensor product of a R-module

G by the ring S. In [15] it is proved that for any MR-group G and any homomorphism µ : R→ S
the tensor completion GS,µ exists and is unique with an accuracy of an R-homomorphism. The
realization of tensor completion of an MR-group in the form of a concrete construction by the
technique of combinatorial theory of groups is exponded in [2].

2 Nilpotent R-groups

Let c > 1 be a natural number. Denote by Nc,R the category of nilpotent R-groups of nilpotence c
from the class LR, i.e. of the R-groups where the identity

∀x1, . . . , xc+1 [x1, . . . , xc+1] = e

is fulfilled, and by N 0
c,R the category of nilpotent MR-groups of step c. The structure of R-groups

without the axiom of choice (MR) is very complicated and that’s why only the MR-group is studied
in most of the works. In the rest of this paper only the MR-groups will be considered.

Hall MR-groups. In order to introduce this notion, following [11] we need to restrict the class of
considered rings.

Definition 2.1. A ring R is called a binomial ring if R is the integer domain containing Z as a
subring and, together with every element α ∈ R, contains all binomial coefficients

Cnα =
α(α− 1) · · · (α− n+ 1)

n!
, n ∈ N.

Any field of zero characteristic, a ring of polynomials over the field and a ring of integer numbers
are examples of binomial rings.

Definition 2.2. A nilpotent group G of nilpotence c is called a Hall R-group (R is a binomial
ring) if an element xα ∈ G is uniquely defined for any α ∈ R and x ∈ G, and the following axioms
(x, y, x1, . . . , xn ∈ G, α, β ∈ R) are fulfilled for all elements of the group G and the ring R:

(1) x1 = x, xα+β = xαxβ , xαβ = (xα)β ;

(2) (y−1xy)α = y−1xαy;
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(3) xα1 · · ·xαn = (x1, . . . , xn)ατ
C2
α

2 (X) · · · τC
c
α

c (X), where X = {x1, . . . , xn}, τk(X) is the k-th
Petrescu word.

Recall that for any natural k the k-th Petrescu word is recursively defined by the formula

τk(X) = τk(x1, . . . , xn) = τ
C1
k

1 (X)τ
C2
k

2 (X) · · · τC
k−1
k

k−1 (X)τ
Ckk
k (X) in a free group F with the generators

x1, . . . , xn. In particular τ1(X) = x1x2 · · ·xn, τ2(X) =
n∏

i>j, i,j=1

[xi, xj ] mod γ3(F ), where γ3(F ) is

the third member of the lower third series of the group F . It is well known (see e.g. [11]) that for
any n ∈ N, τk(X) belongs to a subgroup γk(F ), i.e. to the k-th member of the third central series
of the group F , γ1(F ) = F .

Denote by HNc,R the variety of nilpotent elements of the class ≤ c of Hall R-groups.
If G happens to be abelian, then the axioms (1)–(3) reduce to ordinary axioms of R-modules.

Indeed, τ2, τ3, . . . lie in G′ = e (see [11, Theorem 6.3]). Thus an arbitrary exponential nilpotent Hall
R-group over the binomial ring R is an MR-group. Any torsion-free finitely generated nilpotent
group may serve as an example of a Hall exponential MR-group. A particular case is the group
UTn(R) of all unitriangular matrices with elements from R (for other examples see [11]).

Let us show that the structure of groups from Nc,R much differs from the structure of Hall
R-groups from HNc,R. For this, we reduce the structure of a free MR-group in the variety HNc,R
as this is done in the work [5] of M. G. Amaglobeli and V. N. Remeslennikov. Our consideration
will be limited to two binomial rings R = Q[t], R = Q(t). Denote by G0 a free 2-step nilpotent
R-group in the variety HNc,R with generators x, y. It is well known that the Maltsev base of this
group consists of three elements x, y, [y, x]. A general form of an element g ∈ G0 is g = xγyδ[y, x]ε,
γ, δ, ε ∈ R. In particular, in this group the commutant G′0 is a free R-module of rank 1 with a
generator [y, x]. If now G is a free MR-group in the variety HN 0

c,R, then, as shown in [5], G′ is a
free R-module of infinite rank and the base of this module is found.

Series of commutants in MR-groups. Let G be an arbitrary MR-group. Assume

(G,G)R =
〈
(g, h)α | g, h ∈ G, α ∈ R

〉
R
.

We will call a subgroup (G,G)R a R-commutant of the group G.
Using general theorems of the theory of group varieties (see e.g. [17]) it is not difficult to prove

Proposition 2.3. For any MR-group G the following statements are true:

(1) a R-commutant of G is a verbal MR-subgroup defined by the word [x, y] = x−1y−1xy;

(2) a R-commutant is the smallest MR-ideal by which the factor group is abelian.

For G ∈MR, we call a R-commutant (G,G)R the first R-commutant and denote it by G(1,R).
A R-commutant of G(1,R) is called the second R-commutant and denoted by G(2,R), and so on.
There arises a decreasing series of R-commutants

G = G(0,R) ≥ G(1,R) ≥ · · · ≥ G(n,R) ≥ · · · . (2.1)

Definition 2.4. A exponential MR-group G is called solvable of there exists a natural number n
such that G(n,R) = e.



On nilpotent and solvable MR-groups 103

By induction with respect to n it is easy to show that the ordinary n-th commutant G(n) is
contained in G(n,R). Hence an n-step solvable group in the category MR is n-step solvable in the
category of groups.

Let us proceed to the definition of the lower central series in the category of exponential MR-
groups. The first member of this series is the R-commutant of the group G which we denote
by G(1,R). Assume that the n-th member of the lower central series G(n,R) has already been
defined. Then G(n+1,R) = id([G,G(n,R)]), i.e. G(n+1,R) is the MR-ideal generated by the reciprocal
commutant of G and G(n,R). There arises the lower central series

G = G(0,R) ≥ G(1,R) ≥ · · · ≥ G(n,R) ≥ · · · . (2.2)

Definition 2.5. A exponentialMR-group will be called lower R-nilpotent if there exists a natural
number n such that G(n,R) = e. The smallest number n with such a property is called the step of
R-nilpotence.

Since the ordinary member of the lower central series G(R) is contained in G(n,R), the n-step
lower nilpotent group in the category MR is a nilpotent group of step ≤ n in the category of
groups. From the definition of series (2.1), (2.2) and the definition of a verbal MR-subgroup it
directly follows that for any natural number n and ring R the groups G(n,R) and G(n,R) are verbal
MR-subgroups. Hence there arise the following questions.

Question 1. Is it true that G(n,R) = idG(n), G(n,R) = idG(n), where G(n) is the n-th member of
an ordinary series of commutants, and G(n) is the n-th member of the lower central series?

This question can be reformulated as follows:

(a) is the verbal subgroup G(n,R) generated by the word vn = [vn−1(x), vn−1(y)], where v1 =
[x, y]?

(b) is the verbal subgroup generated by the commutator [x1, . . . , xn]?

Question 2.

(a) Will an n-step nilpotent MR-group be an n-step lower R-nilpotent group?

(b) Will an n-step solvable MR-group be n-step R-solvable?

Series (2.1), (2.2) can be continued up to any ordinal α. If α is not a limit ordinal, then G(α,R)

is obtained from G(α−1,R), while G(α,R) is obtained from G(α−1,R) in the manner described above.
If α is a limit ordinal, then

G(α,R) =
⋂
β<α

G(β,R), G(α,R) =
⋂
β<α

G(α,R).

Question 3. Let F = FR(X) be a free MR-group with base X. Do for any ring R there exist the
ordinals α and β depending on R and such that F (α,R) = e and F(α,R) = e ?

We denote by N n,R the class of lower R-nilpotent groups of step n. We also introduce other
definitions of nilpotence in the category of step MR-groups. For this, by induction with respect to
n we define the notion of a simple α-commutator of weight n, where α = (α1, . . . , αn−1). If n = 2,
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then α = (α) is the above-defined α-commutator (g1, g2)α of elements g1, g2 from G. Assume
that for n ≥ 2 the simple α-commutators of weight n have already been defined. Then a simple
(α, αn)-commutator is an element (x, gn)αn , where x is a simple α-commutator. Further, let X =
{x1, x2, . . . } be the set of letters. Denote by Wn the set Wn = {(· · · ((x1, x2)α1

, x3)α2
, . . . , xn+1)αn |

α1, . . . , αn ∈ R} of all simple α-commutators of weight n + 1 of the letters x1, . . . , xn+1. Denote
by Nn,R the group variety defined by the set of R-words Wn. The groups of this variety are called
R-nilpotent MR-groups of nilpotence step ≤ n.

We denote by Nn,R the variety of R-groups defined by the word vn = [· · · [[x1, x2], x3], . . . , xn+1].
The groups of this variety are called upper nilpotent groups of step ≤ n. The corresponding verbal
MR-subgroup is denoted by γn,R. We obviously have the inclusions N n,R ⊆ Nn,R ⊆ Nn,R. Let us
clarify the nature of these inclusions for small values of n.

Theorem 2.6. For n = 1, 2, all the three definitions of nilpotence coincide.

Proof. Let n = 1. Since, by assumption, the R-commutant G(1,R) of the group G is a verbal MR-
subgroup generated by the commutator [x, y] = x−1y−1xy, we have G(1,R) = γ1,R(G) = γ1,R(G).
Hence it follows that all the three definitions of exponential MR-groups being abelian coincide.

Let n = 2. Let us prove that γ2,R(G) = γ2,R(G). It suffices to prove this equality only for

groups from the variety N2,R, i.e. for groups that are 2-step nilpotent in the group category. Let
G ∈ N2,R. From the commutator relations, for any group from this class and any α ∈ R we have
[xα, y] = [x, y]α. To prove the equality γ2,R(G) = γ2,R(G) it suffices to show that γ2,R(G) = e. In
other words, any simple α-commutator of weight 3 is equal to e. To prove the latter statement, it
suffices to check that any α-commutator of the form (x1, x2)α belongs to the center Z(G) of the
group G. Indeed,

[(x1, x2)α, y] =
[
x−α2 x−α1 (x1x2)α, y

]
= [x−α2 , y] [x−α1 , y] [(x1x2)α, y]

= [x2, y]−α[x1, y]−α[x1x2, y]α = [x2, y]−α[x1, y]−α[x1, y]α[x2, y]α = e.

The check that G(2,R) = γ2,R(G) is quite simple since G(2,R) = id([G(1,R), G]) and G(1,R) as an
MR-subgroup is generated by α-commutators which belong to the center of G. q.e.d.

In [15] it is stated that tensor completions of abelian groups are abelian groups. In the general
case the tensor completion in the category of all power MR-groups is constructed by using free
structures and therefore in the noncommutative case it contains free subgroups. Nevertheless the
following statement is true.

Theorem 2.7. If G ∈ N2,R, then its tensor completion GS ∈ N2,S .

Proof. Preliminarily, we prove that in any exponential R-group G, for any g, f ∈ G and α, β ∈ R
the following identity is fulfilled for α-commutators

[gα, f ] = [g, f ]α
(
g, [g, f ]

)
α
. (2.3)

Indeed, the axiom (3) of the definition of an MR-group states that (f−1gf)α = f−1gαf for all
f, g ∈ G and α ∈ R. We rewrite this equality raking into account that

f−1gf = gαg−αf−1gαf = gα[gα, f ],

(f−1gf)α = (gg−1f−1gf)α =
[
g[g, f ]

)α
= gα[g, f ]α

(
g, [g, f ]

)
α
.
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Cancelling gα, we obtain the required result.
Let us prove the theorem. Denote by Z the R-center of the group G. Since the nilpotence step

of G is equal to 2, the R-commutant γ1(G) ⊆ Z. A straightforward check shows that ZS is the
central subgroup of the group GS . Let us show that γ1(GS) ⊆ ZS . Since γ1(GS) is generated by
α-commutators, for this it suffices to prove that any α-commutator is contained in ZS . Since GS is
generated by 〈λ(G)〉S and since the ordinary commutant lies at the center, it is easy to check by using
the commutator relations [12, p. 171] that the ordinary commutant is at the center. Furthermore,
the identity (3) shows that in this case [xα, y] = [x, y]α. We check that the α-commutator (x, y)α
lies at the center of GS :

[(x, y)α, z] =
[
y−αx−α(xy)α, z

]
= [y−α, z] [x−α, z] [(xy)α, z]

= [y, z]−α[x, z]−α[xy, z]α = [y, z]−α[x, z]−α[x, z]α[y, z]α = e.

q.e.d.
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